Electrochemical Double‐Layer Capacitor based on Carbon@ Covalent Organic Framework Aerogels

نویسندگان

چکیده

High energy demand results in comprehensive research of novel materials for sources and storage applications. Covalent organic frameworks (COFs) possess appropriate features such as long-range order, permanent porosity, tunable pore size, ion diffusion pathways to be competitive electrode materials. Herein, we present a deep electrochemical study two COF-aerogels shaped into flexible COF-electrodes (ECOFs) by simple compression method fabricate an double-layer capacitor (EDLC). This system has considerable interest owing its high-power density long cycle life compared with batteries. Our result confirmed the outstanding behavior ECOFs EDLC devices capacity retention almost 100 % after 10 000 charge/discharge cycles and, our knowledge, highest areal capacitance (9.55 mF cm−2) aqueous electrolytes at higher scan rates (1000 mV s−1) COFs. More importantly, hierarchical porosity observed increases transport, which permits fast interface polarization (low τ0 values). The complete sheds light on using material devices.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbidederived carbon, zeolitetemplated carbon, carbon aerogels, carbon nanotubes, onionlike carbon, and graphene

Electric double layer capacitors, also called supercapacitors, ultracapacitors, and electrochemical capacitors, are gaining increasing popularity in high power energy storage applications. Novel carbon materials with high surface area, high electrical conductivity, as well as a range of shapes, sizes and pore size distributions are being constantly developed and tested as potential supercapacit...

متن کامل

Fabrication of cu based metal-organic framework / graphene Nanocomposite and study electrochemical performance in supercapacitors

High conductivity and high level of electrolyte availability are the main requirements of active materials used in supercapacitors (SCs) to achieve high electrochemical efficiency. In recent years, metal-organic frameworks (MOFs) have been used as electrode materials for SCs due to their suitability of porosity and high surface area. However, using single-component MOFs in supercapacitors resul...

متن کامل

An azine-linked hexaphenylbenzene based covalent organic framework.

In this communication, we report an azine linked covalent organic framework based on a six-fold symmetric hexphenylbenzene (HEX) monomer functionalized with aldehyde groups. HEX-COF 1 has an average pore size of 1 nm, a surface area in excess of 1200 m(2) g(-1) and shows excellent sorption capability for carbon dioxide (20 wt%) and methane (2.3 wt%) at 273 K and 1 atm.

متن کامل

A metal-organic framework-based material for electrochemical sensing of carbon dioxide.

The free primary hydroxyl groups in the metal-organic framework of CDMOF-2, an extended cubic structure containing units of six γ-cyclodextrin tori linked together in cube-like fashion by rubidium ions, has been shown to react with gaseous CO2 to form alkyl carbonate functions. The dynamic covalent carbon-oxygen bond, associated with this chemisorption process, releases CO2 at low activation en...

متن کامل

H2 Evolution with Covalent Organic Framework Photocatalysts

Covalent organic frameworks (COFs) are a new class of crystalline organic polymers that have garnered significant recent attention as highly promising H2 evolution photocatalysts. This Perspective discusses the advances in this field of energy research while highlighting the underlying peremptory factors for the rational design of readily tunable COF photoabsorber-cocatalyst systems for optimal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Angewandte Chemie

سال: 2022

ISSN: ['1521-3773', '1433-7851', '0570-0833']

DOI: https://doi.org/10.1002/ange.202213106